Robust Extreme Multi-label Learning

author: Chang Xu, Peking University
published: Sept. 25, 2016,   recorded: August 2016,   views: 1556

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Tail labels in the multi-label learning problem undermine the low-rank assumption. Nevertheless, this problem has rarely been investigated. In addition to using the low-rank structure to depict label correlations, this paper explores and exploits an additional sparse component to handle tail labels behaving as outliers, in order to make the classical low-rank principle in multi-label learning valid. The divide-and-conquer optimization technique is employed to increase the scalability of the proposed algorithm while theoretically guaranteeing its performance. A theoretical analysis of the generalizability of the proposed algorithm suggests that it can be improved by the low-rank and sparse decomposition given tail labels. Experimental results on real-world data demonstrate the significance of investigating tail labels and the effectiveness of the proposed algorithm.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: