Goal-Directed Inductive Matrix Completion

author: Si Si, Department of Computer Science, University of Texas at Austin
published: Sept. 27, 2016,   recorded: August 2016,   views: 1517

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Matrix completion (MC) with additional information has found wide applicability in several machine learning applications. Among algorithms for solving such problems, Inductive Matrix Completion(IMC) has drawn a considerable amount of attention, not only for its well established theoretical guarantees but also for its superior performance in various real-world applications. However, IMC based methods usually place very strong constraints on the quality of the features (side information) to ensure accurate recovery, which might not be met in practice. In this paper, we pro-pose Goal-directed Inductive Matrix Completion(GIMC) to learn a nonlinear mapping of the features so that they satisfy the required properties. A key distinction between GIMC and IMC is that the feature mapping is learnt in a supervised manner, deviating from the traditional approach of un-supervised feature learning followed by model training. We establish the superiority of our method on several popular machine learning applications including multi-label learning, multi-class classification, and semi-supervised clustering.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: