Visual Quality Assessment of Subspace Clusterings

author: Michael Hund, Department of Computer and Information Science, University of Konstanz
published: Nov. 7, 2016,   recorded: August 2016,   views: 917

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The quality assessment of results of clustering algorithms is challenging as different cluster methodologies lead to different cluster characteristics and topologies. A further complication is that in high-dimensional data, subspace clustering adds to the complexity by detecting clusters in multiple different lower-dimensional projections. The quality assessment for (subspace) clustering is especially difficult if no benchmark data is available to compare the clustering results. In this research paper, we present SubEval, a novel subspace evaluation framework, which provides visual support for comparing quality criteria of subspace clusterings. We identify important aspects for evaluation of subspace clustering results and show how our system helps to derive quality assessments. SubEval allows assessing subspace cluster quality at three different granularity levels: (1) A global overview of similarity of clusters and estimated redundancy in cluster members and subspace dimensions. (2) A view of a selection of multiple clusters supports in-depth analysis of object distributions and potential cluster overlap. (3) The detail analysis of characteristics of individual clusters helps to understand the (non-)validity of a cluster. We demonstrate the usefulness of SubEval in two case studies focusing on the targeted algorithm- and domain scientists and show how the generated insights lead to a justified selection of an appropriate clustering algorithm and an improved parameter setting. Likewise, SubEval can be used for the understanding and improvement of newly developed subspace clustering algorithms. SubEval is part of SubVA, a novel open-source web-based framework for the visual analysis of different subspace analysis techniques.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: