Predicting Matchups and Preferences in Context

author: Shuo Chen, Department of Computer Science, Cornell University
published: Sept. 25, 2016,   recorded: August 2016,   views: 1439

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We present a general probabilistic framework for predicting the outcome of pairwise matchups (e.g. two-player sport matches) and pairwise preferences (e.g. product preferences), both of which have widespread applications ranging from matchmaking in computer games to recommendation in e-commerce. Unlike existing models for these tasks, our model not only learns representations of the items in a more expressive latent vector space, but also models how context modifies matchup and preference outcomes. For example, the context “weather” may alter the winning probability in a tennis match, or the fact that the user is on a mobile device may alter his preferences among restaurants. More generally, the model is capable of handling any symmetric game/comparison problem that can be described by vectorized player/item and game/context features. We provide a comprehensive evaluation of its predictive performance with real datasets from both domains to show its ability to predict preference and game outcomes more accurately than existing models. Furthermore, we demonstrate on synthetic datasets the expressiveness of the model when compared against theoretical limits.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: