On the Intuitiveness of Common Discretization Methods

author: Mario Boley, Cluster of Excellence Multimodal Computing and Interaction, Saarland University
published: Nov. 7, 2016,   recorded: August 2016,   views: 940

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Data discretization methods are usually evaluated in terms of technical criteria that are related to some specific data analysis goal like the preservation of variable interactions. In this paper, we provide a different evaluation principle that assesses the quality of a chosen discretization as the degree to which it coincides with human intuition. This is motivated from the setting of interactive exploratory data analysis where discretizations should be simple, self-explanatory, and fix across results in order to reduce the cognitive load on the user. We present a study design for measuring the intuitive discretization choices of a general human population for a set of discretization problems and present the results of a study trial that we performed with 153 respondents and four problem classes—each using the categories “low”, “normal”, and “high”. Through this trial, we evaluated eight discretization methods from three families: range-based discretization, count-based discretization, and clustering-based discretization. Our results partially confirm results from Cognitive Linguistics that assume prototype-based categorization, which is most closely resembled by clustering-based methods, as a predominant human discretization mechanism. They also show, however, an affinity of participants to sometimes compromise cluster quality in favor of approximating certain category proportions.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: