Inferring Gas Consumption and Pollution Emission of Vehicles throughout a City

author: Yu Zheng, Microsoft Research
published: Oct. 8, 2014,   recorded: August 2014,   views: 2781


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This paper instantly infers the gas consumption and pollution emission of vehicles traveling on a city's road network in a current time slot, using GPS trajectories from a sample of vehicles (e.g., taxicabs). The knowledge can be used to suggest cost-efficient driving routes as well as identifying road segments where gas has been wasted significantly. The instant estimation of the emissions from vehicles can enable pollution alerts and help diagnose the root cause of air pollution in the long run. In our method, we first compute the travel speed of each road segment using the GPS trajectories received recently. As many road segments are not traversed by trajectories (i.e., data sparsity), we propose a Travel Speed Estimation (TSE) model based on a context-aware matrix factorization approach. TSE leverages features learned from other data sources, e.g., map data and historical trajectories, to deal with the data sparsity problem. We then propose a Traffic Volume Inference (TVI) model to infer the number of vehicles passing each road segment per minute. TVI is an unsupervised Bayesian Network that incorporates multiple factors, such as travel speed, weather conditions and geographical features of a road. Given the travel speed and traffic volume of a road segment, gas consumption and emissions can be calculated based on existing environmental theories. We evaluate our method based on extensive experiments using GPS trajectories generated by over 32,000 taxis in Beijing over a period of two months. The results demonstrate the advantages of our method over baselines, validating the contribution of its components and finding interesting discoveries for the benefit of society.

See Also:

Download slides icon Download slides: kdd2014_zheng_pollution_emission_01.pdf (12.5┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: