Learning with Dual Heterogeneity: A Nonparametric Bayes Model

author: Hongxia Yang, IBM Thomas J. Watson Research Center
published: Oct. 7, 2014,   recorded: August 2014,   views: 2682


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Traditional data mining techniques are designed to model a single type of heterogeneity, such as multi-task learning for modeling task heterogeneity, multi-view learning for modeling view heterogeneity, etc. Recently, a variety of real applications emerged, which exhibit dual heterogeneity, namely both task heterogeneity and view heterogeneity. Examples include insider threat detection across multiple organizations, web image classification in different domains, etc. Existing methods for addressing such problems typically assume that multiple tasks are equally related and multiple views are equally consistent, which limits their application in complex settings with varying task relatedness and view consistency. In this paper, we advance state-of-the-art techniques by adaptively modeling task relatedness and view consistency via a nonparametric Bayes model: we model task relatedness using normal penalty with sparse covariances, and view consistency using matrix Dirichlet process. Based on this model, we propose the NOBLE algorithm using an efficient Gibbs sampler. Experimental results on multiple real data sets demonstrate the effectiveness of the proposed algorithm.

See Also:

Download slides icon Download slides: kdd2014_yang_dual_heterogeneity_01.pdf (923.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: