Analyzing Expert Behaviors in Collaborative Networks

author: Huan Sun, Department of Computer Science, University of California, Santa Barbara
published: Oct. 7, 2014,   recorded: August 2014,   views: 5394


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Collaborative networks are composed of experts who cooperate with each other to complete specific tasks, such as resolving problems reported by customers. A task is posted and subsequently routed in the network from an expert to another until being resolved. When an expert cannot solve a task, his routing decision (i.e., where to transfer a task) is critical since it can significantly affect the completion time of a task. In this work, we attempt to deduce the cognitive process of task routing, and model the decision making of experts as a generative process where a routing decision is made based on mixed routing patterns.

In particular, we observe an interesting phenomenon that an expert tends to transfer a task to someone whose knowledge is neither too similar to nor too different from his own. Based on this observation, an expertise difference based routing pattern is developed. We formalize multiple routing patterns by taking into account both rational and random analysis of tasks, and present a generative model to combine them. For a held-out set of tasks, our model not only explains their real routing sequences very well, but also accurately predicts their completion time. Under three different quality measures, our method significantly outperforms all the alternatives with more than 75% accuracy gain. In practice, with the help of our model, hypotheses on how to improve a collaborative network can be tested quickly and reliably, thereby significantly easing performance improvement of collaborative networks.

See Also:

Download slides icon Download slides: kdd2014_sun_collaborative_networks_01.pdf (448.1┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: