COM: a Generative Model for Group Recommendation

author: Chin-Yew Lin, Microsoft Research Asia, Microsoft Research
published: Oct. 7, 2014,   recorded: August 2014,   views: 2696

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


With the rapid development of online social networks, a growing number of people are willing to share their group activities, e.g. having dinners with colleagues, and watching movies with spouses. This motivates the studies on group recommendation, which aims to recommend items for a group of users. Group recommendation is a challenging problem because different group members have different preferences, and how to make a trade-off among their preferences for recommendation is still an open problem. In this paper, we propose a probabilistic model named COM (COnsensus Model) to model the generative process of group activities, and make group recommendations. Intuitively, users in a group may have different influences, and those who are expert in topics relevant to the group are usually more influential. In addition, users in a group may behave differently as group members from as individuals. COM is designed based on these intuitions, and is able to incorporate both users' selection history and personal considerations of content factors. When making recommendations, COM estimates the preference of a group to an item by aggregating the preferences of the group members with different weights. We conduct extensive experiments on four datasets, and the results show that the proposed model is effective in making group recommendations, and outperforms baseline methods significantly.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: