Modeling Mass Protest Adoption in Social Network Communities using Geometric Brownian Motion

author: Fang Jin, Virginia Polytechnic Institute and State University
published: Oct. 7, 2014,   recorded: August 2014,   views: 1807


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Modeling the movement of information within social media outlets, like Twitter, is key to understanding to how ideas spread but quantifying such movement runs into several difficulties. Two specific areas that elude a clear characterization are (i) the intrinsic random nature of individuals to potentially adopt and subsequently broadcast a Twitter topic, and (ii) the dissemination of information via non-Twitter sources, such as news outlets and word of mouth, and its impact on Twitter propagation. These distinct yet inter-connected areas must be incorporated to generate a comprehensive model of information diffusion. We propose a bispace model to capture propagation in the union of (exclusively) Twitter and non-Twitter environments. To quantify the stochastic nature of Twitter topic propagation, we combine principles of geometric Brownian motion and traditional network graph theory. We apply Poisson process functions to model information diffusion outside of the Twitter mentions network. We discuss techniques to unify the two sub-models to accurately model information dissemination. We demonstrate the novel application of these techniques on real Twitter datasets related to mass protest adoption in social communities.

See Also:

Download slides icon Download slides: kdd2014_jin_modelling_mass_protest_01.pdf (2.6┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: