Online Multiple Kernel Regression

author: Steven C.H. Hoi, School of Information Systems, Singapore Management University
published: Oct. 8, 2014,   recorded: August 2014,   views: 2059


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Kernel-based regression represents an important family of learning techniques for solving challenging regression tasks with non-linear patterns. Despite being studied extensively, most of the existing work suffers from two major drawbacks: (i) they are often designed for solving regression tasks in a batch learning setting, making them not only computationally inefficient and but also poorly scalable in real-world applications where data arrives sequentially; and (ii) they usually assume a fixed kernel function is given prior to the learning task, which could result in poor performance if the chosen kernel is inappropriate. To overcome these drawbacks, this paper presents a novel scheme of Online Multiple Kernel Regression (OMKR), which sequentially learns the kernel-based regressor in an online and scalable fashion, and dynamically explore a pool of multiple diverse kernels to avoid suffering from a single fixed poor kernel so as to remedy the drawback of manual/heuristic kernel selection. The OMKR problem is more challenging than regular kernel-based regression tasks since we have to on-the-fly determine both the optimal kernel-based regressor for each individual kernel and the best combination of the multiple kernel regressors. In this paper, we propose a family of OMKR algorithms for regression and discuss their application to time series prediction tasks. We also analyze the theoretical bounds of the proposed OMKR method and conduct extensive experiments to evaluate its empirical performance on both real-world regression and times series prediction tasks.

See Also:

Download slides icon Download slides: kdd2014_hoi_kernel_regression_01.pdf (990.4┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: