Relevant Overlapping Subspace Clusters on Categorical Data

author: Xiao He, LMU Institut für Informatik, Ludwig-Maximilians Universität
published: Oct. 7, 2014,   recorded: August 2014,   views: 2293


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Clustering categorical data poses some unique challenges: Due to missing order and spacing among the categories, selecting a suitable similarity measure is a difficult task. Many existing techniques require the user to specify input parameters which are difficult to estimate. Moreover, many techniques are limited to detect clusters in the full-dimensional data space. Only few methods exist for subspace clustering and they produce highly redundant results. Therefore, we propose ROCAT (Relevant Overlapping Subspace Clusters on Categorical Data), a novel technique based on the idea of data compression. Following the Minimum Description Length principle, ROCAT automatically detects the most relevant subspace clusters without any input parameter. The relevance of each cluster is validated by its contribution to compress the data. Optimizing the trade-off between goodness-of-fit and model complexity, ROCAT automatically determines a meaningful number of clusters to represent the data. ROCAT is especially designed to detect subspace clusters on categorical data which may overlap in objects and/or attributes; i.e. objects can be assigned to different clusters in different subspaces and attributes may contribute to different subspaces containing clusters. ROCAT naturally avoids undesired redundancy in clusters and subspaces by allowing overlap only if it improves the compression rate. Extensive experiments demonstrate the effectiveness and efficiency of our approach.

See Also:

Download slides icon Download slides: kdd2014_he_categorical_data_01.pdf (1.2 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: