Budget Pacing for Targeted Online Advertisements at LinkedIn

author: Souvik Ghosh, LinkedIn Corporation
published: Oct. 7, 2014,   recorded: August 2014,   views: 2700


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Targeted online advertising is a prime source of revenue for many Internet companies. It is a common industry practice to use a generalized second price auction mechanism to rank advertisements at every opportunity of an impression. This greedy algorithm is suboptimal for both advertisers and publishers when advertisers have a finite budget. In a greedy mechanism high performing advertisers tend to drop out of the auction marketplace fast and that adversely affects both the advertiser experience and the publisher revenue. We describe a method for improving such ad serving systems by including a budget pacing component that serves ads by being aware of global supply patterns. Such a system is beneficial for both advertisers and publishers. We demonstrate the benefits of this component using experiments we conducted on advertising at LinkedIn.

See Also:

Download slides icon Download slides: kdd2014_ghosh_budget_pacing_01.pdf (306.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: