Sleep Analytics and Online Selective Anomaly Detection

author: Tahereh Babaie, NICTA, Australia's ICT Research Centre of Excellence
published: Oct. 7, 2014,   recorded: August 2014,   views: 1652


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We introduce a new problem, the Online Selective Anomaly Detection (OSAD), to model a specific scenario emerging from research in sleep science. Scientists have segmented sleep into several stages and stage two is characterized by two patterns (or anomalies) in the EEG time series recorded on sleep subjects. These two patterns are sleep spindle (SS) and K-complex. The OSAD problem was introduced to design a residual system, where all anomalies (known and unknown) are detected but the system only triggers an alarm when non-SS anomalies appear. The solution of the OSAD problem required us to combine techniques from both data mining and control theory. Experiments on data from real subjects attest to the effectiveness of our approach.

See Also:

Download slides icon Download slides: kdd2014_babaie_anomaly_detection_01.pdf (8.3┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: