Parallel Community Detection on Large Networks with Propinquity Dynamics

author: Yuzhou Zhang, Department of Computer Science and Technology, Tsinghua University
published: Sept. 14, 2009,   recorded: June 2009,   views: 4636


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Graphs or networks can be used to model complex systems. Detecting community structures from large network data is a classic and challenging task. In this paper, we propose a novel community detection algorithm, which utilizes a dynamic process by contradicting the network topology and the topology-based propinquity, where the propinquity is a measure of the probability for a pair of nodes involved in a coherent community structure. Through several rounds of mutual reinforcement between topology and propinquity, the community structures are expected to naturally emerge. The overlapping vertices shared between communities can also be easily identified by an additional simple postprocessing. To achieve better efficiency, the propinquity is incrementally calculated. We implement the algorithm on a vertex-oriented bulk synchronous parallel(BSP) model so that the mining load can be distributed on thousands of machines. We obtained interesting experimental results on several real network data.

See Also:

Download slides icon Download slides: kdd09_zhang_pcdlnpd_01.ppt (1.9┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: