Catching the Drift: Learning Broad Matches from Clickthrough Data

author: Sonal Gupta, University of Texas at Austin
published: Sept. 14, 2009,   recorded: June 2009,   views: 3097
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Identifying similar keywords, known as broad matches, is an important task in online advertising that has become a standard feature on all major keyword advertising platforms. Effective broad matching leads to improvements in both relevance and monetization, while increasing advertisers' reach and making campaign management easier. In this paper, we present a learning-based approach to broad matching that is based on exploiting implicit feedback in the form of advertisement clickthrough logs. Our method can utilize arbitrary similarity functions by incorporating them as features. We present an online learning algorithm, Amnesiac Averaged Perceptron, that is highly efficient yet able to quickly adjust to the rapidly-changing distributions of bidded keywords, advertisements and user behavior. Experimental results obtained from (1) historical logs and (2) live trials on a large-scale advertising platform demonstrate the effectiveness of the proposed algorithm and the overall success of our approach in identifying high-quality broad match mappings.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: