Improving Classification Accuracy Using Automatically Extracted Training Data

author: Ariel Fuxman, University of Toronto
published: Sept. 14, 2009,   recorded: June 2009,   views: 3148


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Classification is a core task in knowledge discovery and data mining, and there has been substantial research effort in developing sophisticated classification models. In a parallel thread, recent work from the NLP community suggests that for tasks such as natural language disambiguation even a simple algorithm can outperform a sophisticated one, if it is provided with large quantities of high quality training data. In those applications, training data occurs naturally in text corpora, and high quality training data sets running into billions of words have been reportedly used.

We explore how we can apply the lessons from the NLP community to KDD tasks. Specifically, we investigate how to identify data sources that can yield training data at low cost and study whether the quantity of the automatically extracted training data can compensate for its lower quality. We carry out this investigation for the specific task of inferring whether a search query has commercial intent. We mine toolbar and click logs to extract queries from sites that are predominantly commercial (e.g., Amazon) and non-commercial (e.g., Wikipedia). We compare the accuracy obtained using such training data against manually labeled training data. Our results show that we can have large accuracy gains using automatically extracted training data at much lower cost.

See Also:

Download slides icon Download slides: kdd09_fuxman_icauaetd_01.ppt (1.4┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: