Information Genealogy: Uncovering the Flow of Ideas in Non-Hyperlinked Document Databases

author: Benyah Shaparenko, Cornell University
published: Aug. 13, 2007,   recorded: August 2007,   views: 3248

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We now have incrementally-grown databases of text documents ranging back for over a decade in areas ranging from personal email, to news-articles and conference proceedings. While accessing individual documents is easy, methods for overviewing and understanding these collections as a whole are lacking in number and in scope. In this paper, we address one such global analysis task, namely the problem of automatically uncovering how ideas spread through the collection over time. We refer to this problem as Information Genealogy. In contrast to bibliometric methods that are limited to collections with explicit citation structure, we investigate content-based methods requiring only the text and timestamps of the documents. In particular, we propose a language-modeling approach and a likelihood ratio test to detect influence between documents in a statistically well-founded way. Furthermore, we show how this method can be used to infer citation graphs and to identify the most influential documents in the collection. Experiments on the NIPS conference proceedings and the Physics ArXiv show that our method is more effective than methods based on document similarity.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: