Machine Learning for Stock Selection
published: Aug. 14, 2007, recorded: August 2007, views: 23534
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
In this paper, we propose a new method called Prototype Ranking (PR) designed for the stock selection problem. PR takes into account the huge size of real-world stock data and applies a modified competitive learning technique to predict the ranks of stocks. The primary target of PR is to select the top performing stocks among many ordinary stocks. PR is designed to perform the learning and testing in a noisy stocks sample set where the top performing stocks are usually the minority. The performance of PR is evaluated by a trading simulation of the real stock data. Each week the stocks with the highest predicted ranks are chosen to construct a portfolio. In the period of 1978-2004, PR’s portfolio earns a much higher average return as well as a higher risk-adjusted return than Cooper’s method, which shows that the PR method leads to a clear profit improvement.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Reviews and comments:
i think that the people should be more familiar with financial stuff, then he will know the history is not able to tell the future in the stock market
david- i started watching the video but then i saw your dumb comment. mere conclusions like that prevent yourself to act at all while others are doing something more productive things with it.
Well no system can really predict the future, but technical analysis combined with machine learning is pretty cool stuff.
Write your own review or comment: