Content-based Document Routing and Index Partitioning for Scalable Similarity-based Searches in a Large Corpus

author: Deepavali Bhagwat, University of California
published: Sept. 14, 2007,   recorded: September 2007,   views: 4473
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We present a document routing and index partitioning scheme for scalable similarity-based search of documents in a large corpus. We consider the case when similarity-based search is performed by finding documents that have features in common with the query document. While it is possible to store all the features of all the documents in one index, this suffers from obvious scalability problems. Our approach is to partition the feature index into multiple smaller partitions that can be hosted on separate servers, enabling scalable and parallel search execution. When a document is ingested into the repository, a small number of partitions are chosen to store the features of the document. To perform similarity-based search, also, only a small number of partitions are queried. Our approach is stateless and incremental. The decision as to which partitions the features of the document should be routed to (for storing at ingestion time, and for similarity based search at query time) is solely based on the features of the document. Our approach scales very well. We show that executing similarity-based searches over such a partitioned search space has minimal impact on the precision and recall of search results, even though every search consults less than 3% of the total number of partitions.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: