From hyperlinks to Semantic Web properties using Open Knowledge Extraction

author: Valentina Presutti, Institute of Cognitive Sciences and Technologies (ISTC)
published: Nov. 28, 2017,   recorded: October 2017,   views: 879


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Open information extraction approaches are useful but insufficient alone for populating the Web with machine readable information as their results are not directly linkable to, and immediately reusable from, other Linked Data sources. This work proposes a novel Open Knowledge Extraction approach that performs unsupervised, open domain, and abstractive knowledge extraction from text for producing directly usable machine readable information. The method is based on the hypothesis that hyperlinks (either created by humans or knowledge extraction tools) provide a pragmatic trace of semantic relations between two entities, and that such semantic relations, their subjects and objects, can be revealed by processing their linguistic traces (i.e. the sentences that embed the hyperlinks) and formalised as Semantic Web triples and ontology axioms. Experimental evaluations conducted with the help of crowdsourcing confirm this hypothesis showing very high performances. A demo of Open Knowledge Extraction at

See Also:

Download slides icon Download slides: iswc2017_presutti_knowledge_extraction_01.pdf (6.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: