Lessons Learned in Building Linked Data for the American Art Collaborative

author: Craig A. Knoblock, Information Sciences Institute (ISI), University of Southern California
published: Nov. 28, 2017,   recorded: October 2017,   views: 1028


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Linked Data has emerged as the preferred method for publishing and sharing cultural heritage data. One of the main challenges for museums is that the defacto standard ontology (CIDOC CRM) is complex and museums lack expertise in semantic web technologies. In this paper we describe the methodology and tools we used to create 5-star Linked Data for 14 American art museums with a team of 12 computer science students and 30 representatives from the museums who mostly lacked expertise in Semantic Web technologies. The project was completed over a period of 18 months and generated 99 mapping files and 9,357 artist links, producing a total of 2,714 R2RML rules and 9.7M triples. More importantly, the project produced a number of open source tools for generating high-quality linked data and resulted in a set of lessons learned that can be applied in future projects.

See Also:

Download slides icon Download slides: iswc2017_knoblock_linked_data_01.pdf (1.7┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: