LOD Lab: Experiments at LOD Scale

author: Laurens Rietveld, Faculty of Sciences, Vrije Universiteit Amsterdam (VU)
published: Nov. 10, 2015,   recorded: October 2015,   views: 1727


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


. Contemporary Semantic Web research is in the business of optimizing algorithms for only a handful of datasets such as DBpedia, BSBM, DBLP and only a few more. This means that current practice does not generally take the true variety of Linked Data into account. With hundreds of thousands of datasets out in the world today the results of Semantic Web evaluations are less generalizable than they should and — this paper argues — can be. This paper describes LOD Lab: a fundamentally different evaluation paradigm that makes algorithmic evaluation against hundreds of thousands of datasets the new norm. LOD Lab is implemented in terms of the existing LOD Laundromat architecture combined with the new open-source programming interface Frank that supports Web-scale evaluations to be run from the command-line. We illustrate the viability of the LOD Lab approach by rerunning experiments from three recent Semantic Web research publications and expect it will contribute to improving the quality and reproducibility of experimental work in the Semantic Web community. We show that simply rerunning existing experiments within this new evaluation paradigm brings up interesting research questions as to how algorithmic performance relates to (structural) properties of the data.

See Also:

Download slides icon Download slides: iswc2015_rietveld_lod_scale_01.pdf (597.6 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: