Evolution of Experts in Question Answering Communities

author: Aditya Pal, Department of Computer Science and Engineering, University of Minnesota
published: July 6, 2012,   recorded: June 2012,   views: 2501


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Community Question Answering (CQA) services thrive as a result of a small number of highly active users, typically called experts, who provide a large number of high quality useful answers. Understanding the temporal dynamics and interactions between experts can present key insights into how community members evolve over time. In this paper, we present a temporal study of experts in CQA and analyze the changes in their behavioral patterns over time. Further, using unsupervised machine learning methods, we show the interesting evolution patterns that can help us distinguish experts from one another. Using supervised classification methods, we show that the models based on evolutionary data of users can be more effective at expert identification than the models that ignore evolution. We run our experiments on two large online CQA to show the generality of our proposed approach.

See Also:

Download slides icon Download slides: icwsm2012_pal_evolution_01.pdf (400.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: