Compositional Noisy-Logical Learning

author: Alan L. Yuille, Department of Statistics, University of California, Los Angeles, UCLA
published: Aug. 26, 2009,   recorded: June 2009,   views: 3026

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We describe a new method for learning the conditional probability distribution of a binary-valued variable from labelled training examples. Our proposed Compositional Noisy-Logical Learning (CNLL) approach learns a noisy-logical distribution in a compositional manner. CNLL is an alternative to the well-known AdaBoost algorithm which performs coordinate descent on an alternative error measure. We describe two CNLL algorithms and test their performance compared to AdaBoost on two types of problem: (i) noisy-logical data (such as noisy exclusive-or), and (ii) four standard datasets from the UCI repository. Our results show that we outperform AdaBoost while using significantly fewer weak classifiers, thereby giving a more transparent classifier suitable for knowledge extraction.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: