Model-Free Reinforcement Learning as Mixture Learning

author: Nikos Vlassis, Department of Production Engineering and Management, Technical University of Crete
published: Aug. 26, 2009,   recorded: June 2009,   views: 3662


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We cast model-free reinforcement learning as the problem of maximizing the likelihood of a probabilistic mixture model via sampling, addressing both the in nite and nite horizon cases. We describe a Stochastic Approximation EM algorithm for likelihood maximization that, in the tabular case, is equivalent to a non-bootstrapping optimistic policy iteration algorithm like Sarsa(1) that can be applied both in MDPs and POMDPs. On the theoretical side, by relating the proposed stochastic EM algorithm to the family of optimistic policy iteration algorithms, we provide new tools that permit the design and analysis of algorithms in that family. On the practical side, preliminary experiments on a POMDP problem demonstrated encouraging results.

See Also:

Download slides icon Download slides: icml09_vlassis_mfr_01.pdf (194.0┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: