Learning When to Stop Thinking and Do Something!

author: Barnabás Póczos, Machine Learning Department, School of Computer Science, Carnegie Mellon University
published: Aug. 26, 2009,   recorded: June 2009,   views: 3627


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


An anytime algorithm is capable of returning a response to the given task at essentially any time; typically the quality of the response improves as the time increases. Here, we consider the challenge of learning when we should terminate such algorithms on each of a sequence of iid tasks, to optimize the expected average reward per unit time. We provide an algorithm for answering this question. We combine the global optimizer Cross Entropy method and the local gradient ascent, and theoretically investigate how far the estimated gradient is from the true gradient. We empirically demonstrate the applicability of the proposed algorithm on a toy problem, as well as on a real-world face detection task.

See Also:

Download slides icon Download slides: icml09_poczos_lwts_01.pdf (3.7 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: