Generalization Analysis of Listwise Learning-to-Rank Algorithms

author: Hang Li, Microsoft Research Asia, Microsoft Research
published: Aug. 26, 2009,   recorded: June 2009,   views: 4411


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This paper presents a theoretical framework for ranking, and demonstrates how to perform generalization analysis of listwise ranking algorithms using the framework. Many learning-to-rank algorithms have been proposed in recent years. Among them, the listwise approach has shown higher empirical ranking performance when compared to the other approaches. However, there is no theoretical study on the listwise approach as far as we know. In this paper, we propose a theoretical framework for ranking, which can naturally describe various listwise learning- to-rank algorithms. With this framework, we prove a theorem which gives a generalization bound of a listwise ranking algorithm, on the basis of Rademacher Average of the class of compound functions. The compound functions take listwise loss functions as outer functions and ranking models as inner functions. We then compute the Rademacher Averages for existing listwise algorithms of ListMLE, ListNet, and RankCosine. We also discuss the tightness of the bounds in different situations with regard to the list length and transformation function.

See Also:

Download slides icon Download slides: icml09_li_galltra_01.pdf (619.1┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: