Dynamic Analysis of Multiagent Q-learning with e-greedy Exploration

author: Eduardo Rodrigues Gomes, Swinburne University of Technology
published: Aug. 26, 2009,   recorded: June 2009,   views: 4463


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The development of mechanisms to understand and model the expected behaviour of multiagent learners is becoming increasingly important as the area rapidly find application in a variety of domains. In this paper we present a framework to model the behaviour of Q-learning agents using the e-greedy exploration mechanism. For this, we analyse a continuous-time version of the Q-learning update rule and study how the presence of other agents and the e-greedy mechanism affect it. We then model the problem as a system of difference equations which is used to theoretically analyse the expected behaviour of the agents. The applicability of the framework is tested through experiments in typical games selected from the literature.

See Also:

Download slides icon Download slides: icml09_gomes_damq_01.pdf (1.0┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: