Causal Modelling Combining Instantaneous and Lagged Effects: an Identifiable Model Based on Non-Gaussianity

author: Aapo Hyvärinen, University of Helsinki
published: Aug. 6, 2008,   recorded: July 2008,   views: 6735


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Causal analysis of continuous-valued variables typically uses either autoregressive models or linear Gaussian Bayesian networks with instantaneous effects. Estimation of Gaussian Bayesian networks poses serious identifiability problems, which is why it was recently proposed to use non-Gaussian models. Here, we show how to combine the non-Gaussian instantaneous model with autoregressive models. We show that such a non-Gaussian model is identifiable without prior knowledge of network structure, and we propose an estimation method shown to be consistent. This approach also points out how neglecting instantaneous effects can lead to completely wrong estimates of the autoregressive coefficients.

See Also:

Download slides icon Download slides: icml08_hyvarinen_cmc_01.pdf (312.5 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: