Memory Bounded Inference in Topic Models

author: Ryan Gomes, Chemical Engineering at Caltech, California Institute of Technology (Caltech)
published: July 29, 2008,   recorded: July 2008,   views: 3642


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


What type of algorithms and statistical techniques support learning from very large datasets over long stretches of time? We address this question through a memory bounded version of a variational EM algorithm that approximates inference of a topic model. The algorithm alternates two phases: "model building" and "model compression" in order to always satisfy a given memory constraint. The model building phase grows its internal representation (the number of topics) as more data arrives through Bayesian model selection. Compression is achieved by merging data-items in clumps and only caching their sufficient statistics. Empirically, the resulting algorithm is able to handle datasets that are orders of magnitude larger than the standard batch version.

See Also:

Download slides icon Download slides: icml08_gomes_mbi_01.pdf (2.9┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: