Averaging Support Vector Machines for Processing Large Data Sets

author: Jochen Garcke, Institute for Mathematics, TU Berlin
published: Sept. 1, 2008,   recorded: July 2008,   views: 3385


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The handling of large data sets by support vector machines (SVMs)(Vapnik, 1998) employing a nonlinear kernel suffers from the non-linear scaling of the numerical solution techniques for the underlying optimisation problem. This is in particular valid if the kernel matrix cannot be stored in the main memory anymore and therefore the evaluation of the kernel on given data points needs to be recomputed again and again. We investigate a simple approach to allow the processing of larger data sets: We separate the large data set into a number of smaller ones, each small enough to allow the caching of the kernel matrix, and learn a support vector machine for each of these data sets. For the evaluation on data points we then just simply average the results of the different SVMs.

See Also:

Download slides icon Download slides: icml08_garcke_asvm_01.pdf (544.7┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: