Adaptive Dimension Reduction Using Discriminant Analysis and K-means Clustering

author: Shuiwang Ji, School of Electrical Engineering and Computer Science, Washington State University
published: July 27, 2007,   recorded: July 2007,   views: 8333

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Regularized Kernel Discriminant Analysis (RKDA) performs linear discriminant analysis in the feature space via the kernel trick. The performance of RKDA depends on the selection of kernels. In this paper, we consider the problem of learning an optimal kernel over a convex set of kernels. We show that the kernel learning problem can be formulated as a semidefinite program (SDP) in the binary-class case. We further extend the SDP formulation to the multi-class case. It is based on a key result established in this paper, that is, the multi-class kernel learning problem can be decomposed into a set of binary-class kernel learning problems. In addition, we propose an approximation scheme to reduce the computational complexity of the multi-class SDP formulation. The performance of RKDA also depends on the value of the regularization parameter. We show that this value can be learned automatically in the framework. Experimental results on benchmark data sets demonstrate the efficacy of the proposed SDP formulations.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: