Robust Non-linear Dimensionality Reduction using Successive 1-Dimensional Laplacian Eigenmapse

author: Samuel Gerber, School of Computing, University of Utah
published: July 27, 2007,   recorded: June 2007,   views: 7072

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Non-linear dimensionality reduction of noisy data is a challenging problem encountered in a variety of data analysis applications. Recent results in the literature show that spectral decomposition, as used for example by the Laplacian Eigenmaps algorithm, provides a powerful tool for non-linear dimensionality reduction and manifold learning. In this paper, we discuss a significant shortcoming of these approaches, which we refer to as the repeated eigendirections problem. We propose a novel approach that combines successive 1dimensional spectral embeddings with a data advection scheme that allows us to address this problem. The proposed method does not depend on a non-linear optimization scheme; hence, it is not prone to local minima. Experiments with artificial and real data illustrate the advantages of the proposed method over existing approaches. We also demonstrate that the approach is capable of correctly learning manifolds corrupted by significant amounts of noise.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: