Manifold-adaptive dimension estimation

author: Amir-massoud Farahmand, University of Alberta
published: June 24, 2007,   recorded: June 2007,   views: 5122


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Intuitively, learning should be easier when the data points lie on a low-dimensional submanifold of the input space. Recently there has been a growing interest in algorithms that aim to exploit such geometrical properties of the data. Oftentimes these algorithms require estimating the dimension of the manifold first. In this paper we propose an algorithm for dimension estimation and study its finite-sample behaviour. The algorithm estimates the dimension locally around the data points using nearest neighbor techniques and then combines these local estimates. We show that the rate of convergence of the resulting estimate is independent of the dimension of the input space and hence the algorithm is "manifold-adaptive". Thus, when the manifold supporting the data is low dimensional, the algorithm can be exponentially more efficient than its counterparts that are not exploiting this property. Our computer experiments confirm the obtained theoretical results.

See Also:

Download slides icon Download slides: icml07_corvallis_massoud_farahmand_amir.pdf (7.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: