Leave-One-Out Kernel Optimization for Shadow Detection

author: Tomás F. Yago Vicente, Computer Science Department, Stony Brook University
published: Feb. 10, 2016,   recorded: December 2015,   views: 2150
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The objective of this work is to detect shadows in images. We pose this as the problem of labeling image regions, where each region corresponds to a group of superpixels. To predict the label of each region, we train a kernel Least-Squares SVM for separating shadow and non-shadow regions. The parameters of the kernel and the classifier are jointly learned to minimize the leave-one-out cross validation error. Optimizing the leave-one-out cross validation error is typically difficult, but it can be done efficiently in our framework. Experiments on two challenging shadow datasets, UCF and UIUC, show that our region classifier outperforms more complex methods. We further enhance the performance of the region classifier by embedding it in an MRF framework and adding pairwise contextual cues. This leads to a method that significantly outperforms the state-of-the-art.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: