Information Geometry and Its Applications

author: Shun-ichi Amari, RIKEN Brain Science Institute
published: Dec. 5, 2008,   recorded: November 2008,   views: 23834


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Information geometry emerged from studies on invariant properties of a manifold of probability distributions. It includes convex analysis and its duality as a special but important part. Here, we begin with a convex function, and construct a dually flat manifold. The manifold possesses a Riemannian metric, two types of geodesics, and a divergence function. The generalized Pythagorean theorem and dual projections theorem are derived therefrom.We construct alpha-geometry, extending this convex analysis. In this review, geometry of a manifold of probability distributions is then given, and a plenty of applications are touched upon. Appendix presents an easily understable introduction to differential geometry and its duality.

See Also:

Download slides icon Download slides: etvc08_amari_igaia_01.ppt (1.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: