Instance-based ontological knowledge acquisition

introducer: Laura Hollink, Centrum Wiskunde & Informatica (CWI)
author: Lihua Zhao, National Institute of Informatics
published: July 8, 2013,   recorded: May 2013,   views: 3412


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The Linked Open Data (LOD) cloud contains tremendous amounts of interlinked instances, from where we can retrieve abundant knowledge. However, because of the heterogeneous and big ontologies, it is time consuming to learn all the ontologies manually and it is difficult to observe which properties are important for describing instances of a specific class. In order to construct an ontology that can help users easily access to various data sets, we propose a semi-automatic ontology integration framework that can reduce the heterogeneity of ontologies and retrieve frequently used core properties for each class. The framework consists of three main components: graph-based ontology integration, machine-learning-based ontology schema extraction, and an ontology merger. By analyzing the instances of the linked data sets, this framework acquires ontological knowledge and constructs a high-quality integrated ontology, which is easily understandable and effective in knowledge acquisition from various data sets using simple SPARQL queries.

See Also:

Download slides icon Download slides: eswc2013_zhao_knowledge_01.pdf (2.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: