Improving Categorisation in Social Media using Hyperlinks to Structured Data Sources

author: Sheila Kinsella, DERI Galway, National University of Ireland, Galway
published: July 7, 2011,   recorded: June 2011,   views: 3415


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Social media presents unique challenges for topic classification, including the brevity of posts, the informal nature of conversations, and the frequent reliance on external hyperlinks to give context to a conversation. In this paper we investigate the usefulness of these external hyperlinks for determining the topic of individual posts. We focus our analysis on objects which have related metadata available on the Web, either via APIs or as Linked Data. Our experiments show that the inclusion of metadata from hyperlinked objects in addition to the original post content significantly improved classifier performance on two disparate datasets. We found that including selected metadata from APIs and Linked Data gave better results than including text from HTML pages. We also make use of the semantics of the data to compare the usefulness of different types of external metadata for topic classification in a social media dataset.

See Also:

Download slides icon Download slides: eswc2011_kinsella_improving_01.pdf (506.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: