Ranking Approximate Answers to Semantic Web Queries

author: Alexandra Poulovassilis, Department of Computer Science and Information Systems, Birkbeck College, University of London
published: July 28, 2009,   recorded: June 2009,   views: 2892


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider the problem of a user querying semistructured data such as RDF without knowing its structure. In these circumstances, it is helpful if the querying system can perform an approximate matching of the user's query to the data and can rank the answers in terms of how closely they match the original query. We show that our approximate matching framework allows us to incorporate RDFS inference rules as well as standard notions of approximation such as edit distance, thereby capturing semantic as well as syntactic approximations. The query language we adopt comprises conjunctions of regular path queries, thus including extensions proposed for SPARQL to allow for querying paths using regular expressions. We provide an incremental query evaluation algorithm which runs in polynomial time and returns answers to the user in ranked order.

See Also:

Download slides icon Download slides: eswc09_poulovassilis_raats_01.ppt (605.0┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: