Parallel Structural Graph Clustering

produced by: Data & Web Mining Lab
author: Madeleine Seeland, Technische Universit√§t M√ľnchen
published: Nov. 30, 2011,   recorded: September 2011,   views: 3156

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We address the problem of clustering large graph databases according to scaffolds (i.e., large structural overlaps) that are shared between cluster members. In previous work, an online algorithm was proposed for this task that produces overlapping (non-disjoint) and nonexhaustive clusterings. In this paper, we parallelize this algorithm to take advantage of high-performance parallel hardware and further improve the algorithm in three ways: a refined cluster membership test based on a set abstraction of graphs, sorting graphs according to size, to avoid cluster membership tests in the first place, and the definition of a cluster representative once the cluster scaffold is unique, to avoid cluster comparisons with all cluster members. In experiments on a large database of chemical structures, we show that running times can be reduced by a large factor for one parameter setting used in previous work. For harder parameter settings, it was possible to obtain results within reasonable time for 300,000 structures, compared to 10,000 structures in previous work. This shows that structural, scaffold-based clustering of smaller libraries for virtual screening is already feasible.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: