Efficiently approximating Markov tree bagging for high-dimensional density estimation

author: François Schnitzler, Department of Electrical Engineering and Computer Science, University of Liège
published: Oct. 3, 2011,   recorded: September 2011,   views: 2364


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider algorithms for generating Mixtures of Bagged Markov Trees, for density estimation. In problems defined over many variables and when few observations are available, those mixtures generally outperform a single Markov tree maximizing the data likelihood, but are far more expensive to compute. In this paper, we describe new algorithms for approximating such models, with the aim of speeding up learning without sacrificing accuracy. More specifically, we propose to use a filtering step obtained as a by-product from computing a first Markov tree, so as to avoid considering poor candidate edges in the subsequently generated trees. We compare these algorithms (on synthetic data sets) to Mixtures of Bagged Markov Trees, as well as to a single Markov tree derived by the classical Chow-Liu algorithm and to a recently proposed randomized scheme used for building tree mixtures.

See Also:

Download slides icon Download slides: ecmlpkdd2011_schnitzler_efficiently_01.pdf (284.8 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: