New Regularized Algorithms for Transducitve Learning

author: Partha Pratim Talukdar, Indian Institute of Science Bangalore
published: Oct. 20, 2009,   recorded: September 2009,   views: 5802


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We propose a new graph-based label propagation algorithm for transductive learning. Each example is associated with a vertex in an undirected graph and a weighted edge between two vertices represents similarity between the two corresponding example. We build on Adsorption, a recently proposed algorithm and analyze its properties. We then state our learning algorithm as a convex optimization problem over multi-label assignments and derive an efficient algorithm to solve this problem. We state the conditions under which our algorithm is guaranteed to converge. We provide experimental evidence on various real-world datasets demonstrating the effectiveness of our algorithm over other algorithms for such problems. We also show that our algorithm can be extended to incorporate additional prior information, and demonstrate it with classifying data where the labels are not mutually exclusive.

See Also:

Download slides icon Download slides: ecmlpkdd09_talukdar_nratl_01.pdf (5.0┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: