Syntactic Structural Kernels for Natural Language Interfaces to Databases

author: Alessandro Moschitti, University of Trento
published: Oct. 20, 2009,   recorded: September 2009,   views: 2762


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


A core problem in data mining is to retrieve data in a easy and human friendly way. Automatically translating natural language questions into SQL queries would allow for the design of effective and useful database systems from a user viewpoint. Interesting previous work has been focused on the use of machine learning algorithms for automatically mapping natural language (NL) questions to SQL queries. In this paper, we present many structural kernels and their combinations for inducing the relational semantics between pairs of NL questions and SQL queries. We measure the effectiveness of such kernels by using them in Support Vector Machines to select the queries that correctly answer to NL questions. Experimental results on two different datasets show that our approach is viable and that syntactic information under the form of pairs of syntactic tree fragments (from queries and questions) plays a major role in deriving the relational semantics between the two languages.

See Also:

Download slides icon Download slides: ecmlpkdd09_moschitti_ssknlid_01.pdf (525.0 KB)

Download slides icon Download slides: ecmlpkdd09_moschitti_ssknlid_01.pptx (604.4 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: