Active Learning for Reward Estimation in Inverse Reinforcement Learning

author: Francisco S. Melo, INESC- Instituto de Engenharia de Sistemas e Computadores
published: Oct. 20, 2009,   recorded: September 2009,   views: 4953


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Inverse reinforcement learning addresses the general problem of recovering a reward function from samples of a policy provided by an expert/demonstrator. In this paper, we introduce active learning for inverse reinforcement learning. We propose an algorithm that allows the agent to query the demonstrator for samples at specific states, instead of relying only on samples provided at ”arbitrary” states. The purpose of our algorithm is to estimate the reward function with similar accuracy as other methods from the literature while reducing the amount of policy samples required from the expert. We also discuss the use of our algorithm in higher dimensional problems, using both Monte Carlo and gradient methods. We present illustrative results of our algorithm in several simulated examples of different complexities.

See Also:

Download slides icon Download slides: ecmlpkdd09_melo_alreirl_01.ppt (13.1 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: