Graph-Based Discrete Differential Geometry for Critical Instance Filtering

author: Elena Marchiori, Radboud University Nijmegen
published: Oct. 20, 2009,   recorded: September 2009,   views: 5492


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Graph theory has been shown to provide a powerful tool for representing and tackling machine learning problems, such as clustering, semi-supervised learning, and feature ranking. This paper proposes a graph-based discrete differential operator for detecting and eliminating competence-critical instances and class label noise from a training set in order to improve classification performance. Results of extensive experiments on artificial and real-life classification problems substantiate the effectiveness of the proposed approach.

See Also:

Download slides icon Download slides: ecmlpkdd09_marchiori_gbddgcif_01.pdf (716.6┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: