Integrating Novel Class Detection with Classification for Concept-Drifting Data Streams

author: Latifur Khan, Department of Computer Science, Erik Jonsson School of Engineering & Computer Science, The University of Texas at Dallas
published: Oct. 20, 2009,   recorded: September 2009,   views: 3225

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In a typical data stream classification task, it is assumed that the total number of classes are fixed. This assumption may not be valid in a real streaming environment, where new classes may evolve. Traditional data stream classification techniques are not capable of recognizing novel class instances until the appearance of the novel class is manually identified, and labeled instances of that class are presented to the learning algorithm for training. The problem becomes more challenging in the presence of concept-drift, when the underlying data distribution changes over time. We propose a novel and efficient technique that can automatically detect the emergence of a novel class in the presence of concept-drift by quantifying cohesion among unlabeled test instances, and separation of the test instances from training instances. Our approach is non-parametric, meaning, it does not assume any underlying distributions of data. Comparison with the state-of-the-art stream classification techniques prove the superiority of our approach.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: