Feature Selection by Transfer Learning with Linear Regularized Models

author: Thibault Helleputte, Computing Science Engineering Department, Université catholique de Louvain
published: Oct. 20, 2009,   recorded: September 2009,   views: 3817


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


This paper presents a novel feature selection method for classification of high dimensional data, such as those produced by microarrays. It includes a partial supervision to smoothly favor the selection of some dimensions (genes) on a new dataset to be classified. The dimensions to be favored are previously selected from similar datasets in large microarray databases, hence performing inductive transfer learning at the feature level. This technique relies on a feature selection method embedded within a regularized linear model estimation. A practical approximation of this technique reduces to linear SVM learning with iterative input rescaling. The scaling factors depend on the selected dimensions from the related datasets. The final selection may depart from those whenever necessary to optimize the classification objective. Experiments on several microarray datasets show that the proposed method both improves the selected gene lists stability, with respect to sampling variation, as well as the classification performances.

See Also:

Download slides icon Download slides: ecmlpkdd09_helleputte_fstllrm_01.pdf (735.4¬†KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: