Knowledge Discovery from Evolving Data

author: Myra Spiliopoulou, Faculty of Computer Science (FIN), University of Magdeburg
author: Frank Hoppner, University of Applied Sciences Braunschweig/Wolfenbüttel
author: Mirko Böttcher, University of Magdeburg
published: Oct. 10, 2008,   recorded: September 2008,   views: 4394

See Also:

Download slides icon Download slides: ecmlpkdd08_bottcher_kdfe.pdf (1.4 MB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.

 Watch videos:   (click on thumbnail to launch)

Watch Part 1
Part 1 45:44
Watch Part 2
Part 2 29:26
Watch Part 3
Part 3 44:30
Watch Part 4
Part 4 15:54
Watch Part 5
Part 5 39:06


Data mining has traditionally concentrated on the analysis of a static world, in which data instances are collected, stored and analyzed to derive models and take decisions according to them. More recent research on stream mining has put forward the need to deal with data that cannot be collected and stored statically but must be analyzed on the fly. At the same time, the need to store, maintain, query and update models derived from the data has been recognized and advocated [LT08]. However, these are only two aspects of the dynamic world that must be analyzed with data mining: The world is changing and so do the accumulating data and, ultimately, the models derived from them. The challenges for Knowledge Discovery in a changing world have two forms: (a) adapting the patterns to the changes in the population and (b) capturing, understanding and highlighting the changes. In this tutorial, we discuss the topics associated with data mining for changing environments and elaborate on research advances in this area. Relevant research comes among else from the fields of incremental mining, stream mining, temporal mining and change detection. Since this is a very wide field, we concentrate on the second challenge, the understanding of change, and we organize research contributions in this context.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 Fabian, February 13, 2009 at 10:07 a.m.:

Most of the video links are not accesible the files cannot be found, if these videos are not available then that should be stated. i have spent hours trying out the various lectures on Data Mining/ Knowledge Discovery and not even one has been able to play.

Write your own review or comment:

make sure you have javascript enabled or clear this field: