Learning optimally from self-interested data sources in on-line ad auctions

author: Onno Zoeter, Xerox Research Centre Europe, Xerox
published: Dec. 20, 2008,   recorded: December 2008,   views: 3821

See Also:

Download slides icon Download slides: bsciw08_zoeter_lofsdsioao_01.pdf (541.2 KB)

Help icon Streaming Video Help

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In the analysis of current online ad auctions essential parameters such as click-through rates are often assumed to be known. The disregard of the uncertainty that is present in reality leads to several serious problems. In the talk we will highlight two: (i) there is no principled exploration of new ads, and (ii) there is no incentive for advertisers to only subscribe to well targeted key-words. In fact, there is an interesting opportunity for very poorly targeting advertisers to exploit this fact. We present a new auction that solves both problems. The key trick for this auction is that advertisers are not only requested to submit a bid, but also a belief over their own click-through rate.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: